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A proposal is made for a direct experimental method to determine the phases of crystallographic structure 
factors. The method is based on the observation of electron-microscope dark-field moir6 patterns. The 
kinematical theory of electron diffraction is used in the presentation of the method. Compensation of 
dynamical effects and instrumental aberrations is briefly discussed. 

Introduction 

The outstanding problem in crystallography is still that 
of determining the phases of the diffracted beams in a 
diffraction experiment. Only the amplitudes of such 
beams can normally be recorded, and thus only the 
amplitudes of the Fourier coefficients of the scattering 
potential can be determined. It is therefore not possible 
to reconstruct, in a direct way, the spatial distribution 
of the scattering potential in the crystal, which would 
be equivalent to determining the structure un- 
ambiguously. A very large number of structures have, 
of course, been solved, with a number of different 
methods for phase assignment. These include the direct 
methods derived from mathematical properties of 
Fourier series, Patterson-function methods, iso- 
morphous replacement, anomalous dispersion, and 
simple trial and error [see, for example, Lipson & 
Cochran (1966) and the references cited therein]. In 
addition, Hoppe (1969a, b) and Hoppe & Strube (1969), 
have described a method by which phases could be de- 
termined if the primary beam in an electron diffraction 
experiment has an inhomogeneous intensity distri- 
bution. This could be obtained, for instance, by using 
suitable apertures in the illuminating system. A similar 
idea is the basis for Cotterill, Gerward & Lindegaard- 
Andersen's (1978) proposal for phase determination 
with a modified X-ray interferometer technique. 

Another approach to direct experimental phase 
determination is to exploit interference effects. Par- 
ticularly promising is the very direct approach of 
multiple-beam lattice imaging with electron microscopy 
[see, for example, Allpress & Sanders (1973) and the 
references cited therein]. It should be emphasized, how- 
ever, that with present-day electron-microscope 
resolution (approximately 1 A) fine detail cannot be 
obtained. In fact, the most fruitful work in this field has 
been performed on crystals with rather large unit cells, 
where the observed details have been groups of a few 
atoms within the unit cell. Improvements in resolution, 

on the other hand, could ultimately lead to direct 
observation of the positions of single atoms within the 
unit cell by this technique. 

Another interference effect which is commonly 
observed in electron microscopy and which could be 
used for phase determination is the moir6 effect. These 
patterns were obtained several years before lattice 
images were observed, and they have been used to a 
certain extent in the study of crystal defects (Bassett, 
Menter & Pashley, 1958). The possibility of extracting 
phase information from moir~ patterns does not seem 
to have attracted much attention. Almost twenty years 
ago Cowley & Moodie (1959) pointed out the 
possibility of obtaining the Patterson function of the 
potential distribution from moir6 patterns, but of course 
this does not give direct phase information. They 
pointed out that a moirb pattern produced by over- 
lapping thin crystals yields information on the convolu- 
tion of the projections of the potential distributions of 
the two crystals. But this still leaves the unknown 
potential distribution to be calculated and the structure 
to be solved. 

In this communication a direct experimental method 
is presented for obtaining the phases of diffracted 
electron beams. It is based on the observation of dark- 
field moir~ patterns, and it deals with the diffracted 
beams of different order separately in the recording 
process. The method is described in terms of the kine- 
matical theory of diffraction in thin crystals. Dynamical 
effects are briefly discussed together with other detri- 
mental effects. 

1. Kinematical theory of moir6 patterns 

1.1 Phase relations for collinear vectors 

The kinematical theory of electron diffraction pre- 
dicts the amplitudes and phases of diffracted beams 
from a crystal illuminated by an incoming beam. A 
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simple derivation has been presented by Howie (1971). 
Let the wave function of the incoming beam be 

q/0 = ~'0 exp(ik0" r) (1) 

and let the crystal have thickness t and the electrostatic 
potential 

V(r) = E Vg exp(ig, r) (2) 
g 

where the sum is extended to all reciprocal-lattice 
vectors g. The Fourier coefficients V~ are complex 
numbers so that 

Vs= IVsl exp(i,,g) (3) 

where % are the desired phases. 
The diffracted beams emerging from the crystal are 

described by the wave functions 

ire sin (½tSg) exp(-½itsg) 
~'g = ~'o ~g ½Sg 

× exp[i(k 0 + g + Sg). r] (4) 

where 
2nh 2 k o 

(5) 
~ g -  2 m e V  s 

k o = I kol, Sg : I Sgl. (6) 

The deviation vectors s s are parallel to k 0, and they are 
subject to the condition 

I k 0 + g + s~l = k 0. (7) 

The correction of the effect of the excitation errors s s is 
discussed later. For the time being it will be assumed 
that the s s for the different diffracted beams are either 
zero or infinite. We then have to deal only with the dif- 
fraction vectors g for which s s is zero, and the corre- 
sponding excited beams. For these, (4) and (5) lead to 

~,s = i~0 CVgexp[ i ( k  o + g).rl (8) 

where C is a real constant. 
Now let two crystals, designated (I) and (II), overlap 

and suppose that the beam passes first through (I) and 
then through (II), the latter being a crystal of known 
structure. In crystal (I) beams with diffraction vector gx 
and all integer multiples of g~ are excited. In crystal (II) 
the same applies for a diffraction vector glI" gJ and gll 
must be almost identical, that is 

0 < I gl - -  gI[ I '~ I gll. (9) 

For (9) to be fulfilled gi and gi~ must be almost equal. 
The double layer gives rise to beams diffi'acted once 
and twice; these are conveniently described with a 
double-index notation n~, n2 so that ~',,, ~_ is the beam 
diffracted by nlg ~ and thereafter by n2gH~ l[f either n I or 
n 2 equals zero, no diffraction of the beam occurs in the 
corresponding crystal. It is assumed that neither the 

singly diffracted beams nor the doubly diffracted beams 
suffer any excitation errors. Then by (8), and taking the 
constant C to be identical for the two crystals, one 
obtains 

~,,,.o = ~oiCV,,,g~ exp[i(ko + nl g~)" rl (10) 

~o.n2 = gtoiCVn2g, exp[i(ko + n2gu)" r] (11) 

~/~nl, H2 = - - ~ 0  C2 V?'/lgl Vn2gl, 

x exp[i(ko + nl gi + n2gii), rl. (12) 

For the intensity in a dark-field moir~ pattern formed 
with contributions from only ~'~.0 and ~._1.~ one 
obtains 

I(r) = I~., 0 + ~/._1,112 

= I ~ n , 0 1 2 - t - I I P ' n _ l ,  l l2  + 2 Re(q~n ,01P 'n_ l ,1 ) ,  (13) 

Re designating 'real part of', as usual. Only the last term 
in this expression is of interest here, the other two terms 
being constant. 

For n > 1 one obtains 

2 Re(gt*.0 gt,,_ ~. ~) = 2 Relql~f31VngllV(n_l)g,  llVg,,I 
/ 

x exp --i(k o + ngi).  r -  i + (~,,g~ 

+ i [ k  0 + ( n - 1 ) g  x + g n ] . r  

+ i[Tr + t t (n- l )g~ + rlgH]}) (14) 

----- K cos (glx-- g l ) . r  + 

+ (tg u + ( l ( n _ l ) g  I - -  (tngl[ • 

The positions r, of the maxima in (14) are determined 
by 

7Z 
( g l I -  gl).r,, + ~ + ,~g,, + tq~- l )g , -  ttng, = 2pzr. (15) 

For n = 1 the moir6 pattern is created by interference of 
singly diffracted beams and (15) is modified to 

( g n -  gl) .r l  + t~g.-  t~g, = 2pzr. (16) 

Introducing Ag = gxi - gl and subtracting (16) from 
(15) one obtains 

7[ 
¢~g = Ag. ( r~- -  rl) + -~ + t~(,,-l)g, + t~g,(+2pzr).(17) 

From (17) it is apparent that by measuring the 
displacements (r. - r 1) of the points of maximum 
intensity of different orders of dark-field moir6 patterns 
one can obtain the phases %s, if tts, is known. The 



380 CRYSTALLOGRAPHIC PHASE DETERMINATION FROM MOIRI~ PATTERNS 

displacements can be measured by referring the 
individual moir~ patterns to some fixed points; for 
instance, some inclusion or hole. It should be borne in 
mind that Ag might correspond to fringe spacings larger 
than say 100 A. 

In principle, therefore, all the phases (~,,B can be 
determined if (t_ is known. In the Appendix it Is shown 

I11 . 

that three (~s corresponding to non-parallel reciprocal 
vectors can l~e arbitrarily set to zero and that there- 
after all the phases are fixed. One has a method, 
therefore, of establishing phase relations between 
Fourier coefficients corresponding to collinear recip- 
rocal vectors. 

1•2. Phase relations for coplanar vectors 

Let gx, g[, and g~' be three coplanar reciprocal 
vectors in the unknown crystal (I), and let gn, g~, and 
g'~'~ be three coplanar reciprocal vectors in the known 
crystal (II) each fulfilling conditions like (9) with one of 
the reciprocal vectors in crystal (I). When moir6 
patterns are obtained from diffraction in g~ and gl~, 
from g[ and g~x and from g~' and g~'z, the positions of 
maximum intensity are r~, r], and r'l', respectively, and 
these fulfil (16). 

As the structure of crystal (II) is known, sets of 
values of the phases ~s ' ¢~g', and ~ ,, are available. The 

• . . I I  l I  . g l I  

origin of the coordinate system is now chosen to lie 
close to some fixed point so that the above-mentioned 
phases have values corresponding to some convenient 
consistent set of phases for structure (II); see the 
Appendix. The distance from the fixed point to the 
origin of the coordinate system need not be larger than 
the maximum dimension of the unit cell in crystal (II), 
and it is thus negligible compared with the fringe 
spacing in the moir+ patterns. Therefore, members of a 
consistent set of phases ~%,%,, and ~g,, can be obtained 
without appreciable error'frc~m the three equatinns of 
type (16), with r~, r'~, and r' l' as vectors not from the 
origin of the coordinate system but from the fixed point. 
If ~s~ and ~s~', say, are known in advance, either because 
they have been set at zero as members of the set of 
three phases that can be arbitrarily assigned, or from a 
similar calculation, the translation vector Ar in (A 3) of 
the Appendix can be calculated, and a new consistent 
value of~t, emerges. With a known structure used a~ 
reference, therefore, a consistent set of phases of the 
Fourier coefficients corresponding to fundamental 
reciprocal vectors can be obtained. The word 'funda- 
mental' is used here in the sense of 'shortest in a 
collinear set'. 

1.3. Phase relations for arbitrary vectors 

An arbitrary diffraction vector can be considered co- 
planar with a diffraction vector, the phase of which has 

been arbitrarily assigned, and another diffraction vector 
in the plane extended by the two remaining diffraction 
vectors, the phases of which were arbitrarily assigned. 
Thus, the phases of vectors with arbitrary orientation 
with respect to the three vectors, the phases of which 
were arbitrarily assigned, can be determined. 

2. Validity of approximations 

In the preceding sections a number of approximations 
have been involved, explicitly or implicitly• The nature 
of the approximations can conveniently be classified 
according to whether they concern the diffraction pro- 
cess or the imaging in the instrument. 

2.1. Approximations regarding the diffraction process 

The kinematical theory is in itself an approximate 
theory but an extra approximation has been involved, 
namely that of no excitation errors. As seen in (4), 
excitation errors in the kinematical theory give rise to 
additional phase shifts, but they can be compensated 
for by calculation. However, a more systematic 
approach to the approximations involved in the 
diffraction process would be to look upon the method 
described in the previous paragraphs as a means of 
measuring the actual phases of the diffracted beams at 
the exit surface of the second crystal. The crystallo- 
graphic phases would then have to be calculated with 
dynamical theory. No attempt to solve that formidable 
problem will be attempted here, but some comments on 
possible routes to a solution will be given. The converse 
problem, to calculate the amplitudes and phases of the 
diffracted beams, has been solved analytically, but not 
in a closed form, by Cowley & Moodie (1957). An 
efficient iterative approach, suitable for numerical 
calculations, has been presented by Goodman & 
Moodie (1974), and a possible way to obtain the 
desired crystallographic phases would be to let these 
be parameters to be optimized in a fit of numerically 
calculated diffracted beam phases to the measured 
values. This hardly seems an efficient scheme, and a 
more attractive method would be to use c~ystals thin 
enough for the kinematical theory to be valid. This 
might require crystals less than say 100 A thick which 
are very difficult to manipulate• It might be possible 
instead to look at differences between the phases of the 
diffracted beams from crystals with a difference of 
thickness in that order of magnitude. It should finally be 
noted that an indication of the significance of 
dynamical effects in the multi-beam case may be 
obtained from the dynamical theory of moir+ patterns 
in the two-beam case presented by Hashimoto, Man- 
nami & Naiki (1960) and by Gevers (1962). 
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2.2. Approximations regarding the imaging process 

Electron microscopes are not perfect imaging sys- 
tems; various aberrations set limits to the resolution 
which can be obtained. Discussions of the resolution 
limit for electron microscopes are presented by Hirsch, 
Howie, Nicholson, Pashley & Whelan (1965) and more 
recently by Hanszen (1971), who uses the theory of 
transfer functions. The moir~ fringe patterns to be 
observed for determining crystallographic phases can 
have spacings of several hundred ~.ngstroms, so the 
method does not depend on very high resolution. How- 
ever, the same factors that limit resolution and defects 
of focus introduce phase shifts for the diffracted beams. 
The phase shifts are known functions of the angle 
between the optical axis and the diffracted beam. 

These angles are in general not the same for the two 
diffracted beams contributing to a moir~ pattern, and 
therefore errors are introduced if corrections are not 
performed. As the corrections can easily be calculated, 
they do not give rise to any problems from the 
theoretical point of view. 

Another approximation about the instrument is that 
the incoming beam has been considered a plane wave. 
In fact, the illumination has a finite coherence length 
(see, for example, Heidenreich, 1964), which must be 
larger than the fringe spacing for the fringes to be 
observed. This condition, however, is satisfied if the 
diffraction spots are distinct. If it is not satisfied, 
defocusing the illumination or using a smaller conden- 
ser aperture is required; unfortunately, both of these 
measures reduce the intensity. 

3. Experimental investigation 

In order to test the proposed theory, an investigation of 
dark-field moir6 patterns in talc [Mg3Si40~0 (OH)2] was 
undertaken. This crystal belongs to the monoclinic 
system and has the space group C2/c (Wyckoff, 1968); 
the structure thus has a centre of symmetry. Thin flakes 
of talc were prepared by treating a suspension of talc in 
alcohol ultrasonically in a commercial cleansing device, 
and the flakes were then caught on 400-mesh grids. The 
specimens were examined with a JEM-200 A electron 
microscope operated at 200 kV. 

Rotation dark-field moir6 patterns of different orders 
were obtained with g~ = (133) and gil = (133) in two 
overlapping crystals. The absence of Kikuchi lines in 
the diffraction pattern (Fig. 1) indicates that the 
crystals were thin. The dark-field moir6 patterns (Figs. 
2 and 3) were both obtained with the illumination tilted 
to bring the contributing diffracted beam to the optical 
axis of the microscope. The diffraction pattern corre- 
sponds to the diffraction condition for the lowest-order 
moir~ pattern. The rotation was very slight and it was 
impossible to distinguish the splitting of the spots in the 
diffraction pattern in Fig. 1. As a consequence of this 
the moir6 patterns in Figs. 2 and 3 are the result of 
interference of gi and gii beams and 2g I and 2g H beams 
respectively. The gi + g~ beam is of course included in 
the moir6 pattern in Fig. 3, but it is much weaker than 
either of the 2g I and 2gig beams. Taking one of the 
crystals, say the one designated (I), as the known 
crystal (i.e. exploiting the knowledge of the centre of 

Fig. I. Indexed diffraction pattern from overlapping talc crystals. Tile relative rotation of the two crystals can be calculated from the 
spacing of the moir+ pattern in Fig. 2 to be 2.3 × 10 -3 rad (~7.8 minutes or arc). The splitting of the diffraction spots due to this 
rotation is imperceptible. 
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symmetry in this crystal), the phases <is, and ~2s can be 
set to zero and zero or zt respectively. Then by 
measuring the displacements of the moir6 patterns from 
Fig. 2 to Fig. 3 the phase tl2g can be determined when 
tt s,, is set to zero. Fig. 4 clea'~ly demonstrates that the 

displacements correspond to a phase difference t~2s - 
• 1 

a 2s equal to e~ther zero or zc because every second 
mo~['6 fringe in Fig. 3 is coincident with a moir6 fringe 
from Fig. 2. Fig. 4 was obtained by cutting a section 
from Fig. 3 to obtain edges at a suitable moir6 pattern 

i 

Fig. 2. Dark-field image, corresponding to the 133 reflections, of the area contributing to the diffraction pattern (Fig. 1). Note the widely 
spaced moire pattern (spacing ~_ 104 nm). 

/ 

i 

i 

Fig. 3. Dark-field image, corresponding to the 266 reflections, of the same area as seen in Fig. 2 showing moire pattern with half the 
spacing seen in Fig. 2 (spacing ~52 nm). 
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(arrows marked M) and at certain fix points (arrows 
marked F) to assist in the alignment. This section of 
Fig. 3 was then positioned on Fig. 2, and the compo- 
site picture photographed. 

What has been done is in effect to measure the phase 
~2s,,, which was of course known to be equal to "zg,, 
with the choice of ¢ts, and tt.~,. In the case presented, the 
result of the measurement is a2s. = a2s, + n/2 + n/2, 
because of ambiguity of the phase difference being 
either zero or n. If the moir6 pattern resulting from 
interference between the 2g~ and g~ + gIl beams had 
been obtained, this last ambiguity could have been 
resolved. 

Conclusion 

A direct experimental method for obtaining the phase 
of diffracted beams in a diffraction experiment has been 
presented and an experimental test demonstrating the 
determination of a known phase has been performed. 
The method is based on the observation of different 
orders of dark-field moir6 patterns from crystal bi- 
layers consisting of one crystal with known structure 
and a second crystal the structure of which is to be 
determined. From a theoretical point of view the phase 
problem can be considered solvable by this method, 
although the application of the principle may be quite 
laborious in the case of structures with large unit cells. 

One of the authors (JUM) gratefully acknowledges 
financial support from the Otto Monsted Fond, while 
part of this work was performed. 

APPENDIX 

The lattice potential V(r) has the Fourier expansion 

V(r)= ~ 'Vsexp(ig . r  ) = ~ l V s i e x p [ i ( g . r + , g ) ] .  (Al) 
g g 

This Fourier series and indeed the function V(r) refer 
to some choice of origin of the coordinate system and 
some fixed position of the crystal relative to the origin 
(positions connected by the space-group symmetry 
operations are considered to be identical). 

If the origin is translated by Ar, the potential is des- 
cribed by a new function V'(r ') which is 

V'(r ') = V(r' + Ar) 

= ~' Vsexp{i[(r'+ Ar).g + . s ]} .  (A2) 
g 

It is easily seen that the phases are changed to 

. 'g  = . g  + Ar.g. (A3) 

Therefore, knowledge of the phase of one Fourier 
coefficient Vg implies that the origin (or the origin 
translated by a lattice vector) must lie in a plane normal 
to g. knowledge of the phases of two coefficients Vs, 

r 

Fig. 4. Part of Fig. 3 superimposed on Fig. 2 with the aid of fiduciary points indicated by arrows marked F. Between the arrows marked 
M one sees that every second moir~ fringe from Fig. 3 is coincident with a moir6 fringe from Fig. 2. The same applies on the other side of 
the dislocation situated at the arrow marked D. 
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and V°,  where gl and g2 are non-parallel, implies that 
. m 2  . . . .  

the origin (or the origin translated by a lattice vector) is 
restricted to lie in a line normal to the set of planes de- 
fined by gt and gz, and knowledge of the phases of three 
Fourier coefficients corresponding to non-parallel vec- 
tors completely determines the position of the origin (or 
the origin translated by a lattice vector). 

Analogous arguments apply in the case where the 
lattice is translated by some vector At. It can therefore 
be concluded that when phases are assigned to describe 
a structure, three of them corresponding to non-parallel 
vectors can be chosen arbitrarily reflecting the freedom 
in choice of origin. When this has been done, all the 
other phases are uniquely determined to be members of 
a, by definition, consistent set of phases for the 
structure. 
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Order-Disorder Phase Transition in Dichlorodurene 
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The structure of dichlorodurene in the ordered phase was determined from neutron diffraction data at 70 K 
with the help of intra- and intermolecular potential calculations already published [Messager & Sanquer 
(1974). Mol. Cryst. Liq. Cryst. 26, 373-380]. The space group is the same as at room temperature, P21/a , but 
the cell parameters are integer multiples of those at room temperature, and there are three molecules in the 
asymmetric unit, instead of half a molecule. The phase transition is of order-disorder type and the first-order 
nature of this transition is established by the observation of a weak hysteresis. 

Introduction 

The crystal structure of dichlorodurene, [C6(CH3)4C12] 
or DCD,  was previously determined at room temper- 

* Present address: University of Missouri Research Reactor 
Facility, Research Park, Columbia 65201, USA. 

ature and we recall briefly some important results 
(Messager & Blot, 1971): D C D  crystallizes in space 
group P2Ja with two molecules on centres of 
symmetry in the unit cell of parameters a = 17.05 (5), 
b = 3.96 (Z),c= 8.26 (3) A, f l= 117.5(1)  ° . 

Very large thermal-motion parameters and X-ray 
diffraction observations on equivalent substituents of 


